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ABSTRACT

During the last decades nonlinear system theory has 
been widely applied to  the  analysis  of  biomedical  time 
series and given rise to what is known as nonlinear and 
fractal  physiology.   Some  of  these  studies  have  been 
intended  to  develop  more  reliable  methodologies  for 
understanding how biological systems respond to peculiar 
altered conditions induced by internal stress, environment 
stress and/or disease. Herein, we show some of our results 
regarding the fractal dependency on different conditions 
of  physiological  signals  such  as  inter-breath  intervals, 
heart inter-beat intervals and human stride intervals.

1. INTRODUCTION

Physiological  phenomena  have  been  studied  by 
means of averages, histograms and simple power spectra 
of  a  physiological  variable.  More  recently  the  focus of 
analysis  has  shifted to  the  study  of  the  patterns  in  the 
fluctuations of the variable. These fluctuations are not as 
simple  as  random  stochastic  phenomena  but  present 
fractal  properties  [West  and  Goldberger,  1987;  West, 
1990;  Goldberger  et  al.,  1990;  Bassingthwaighte  et  al., 
1994].  Indeed,  physiological  time  series  are  found  to 
exhibit  complex autocorrelation patterns  suggesting that 
the dynamics and the structure of the underlying biology 
are nonlinear, chaotic and/or fractal, either in space, time 
or both. 

Peng  et  al.  [1999]  were  the  first  to  show that  the 
scaling of the central moments of beat-to-beat intervals or 
heart rate variability (HRV) time series yield the fractal 
dimension  of  the  cardiovascular  control  system. 
Subsequently HRV time series has been found, rather than 
being monofractal, to be multifractal [West et al., 1999]. 
Similarly, walking as described by stride-to-stride interval 
time series, also called stride rate variability (SRV), has 
been found to be characterized by fractal [Hausdorff et al., 
1995; Hausdorff et al.,  1997] and multifractal properties 
[Scafetta et al., 2003]. 

2. FRACTAL & MULTIFRACTAL SEQUENCES

Fractal  or  long-range  correlated  processes 
[Mandelbrot, 1983; Feder, 1988] have been classified as 
1/f-phenomena, since their time series have power spectra 
that  exhibit  an  inverse  power  law  with  respect  to 
frequency,  P(f)~1/fβ. Similarly, the degree of long-range 
correlation of a time series can be assessed from the Hurst 
exponent H=(β+1)/2 and from the fractal dimension D=2-
H.  The algorithms used to  estimate the  Hurst  exponent 
directly are usually quite simple and stable [Peng et al., 
1994; Scafetta and Grigolini, 2002]. A simple algorithm is 
based on the estimation of the standard deviation of the 
diffusion process D(τ) generated by integrating the data of 
the time series. This function of the diffusion time τ, in the 
case of long-range correlations, yields a curve of the type 
D(τ)=cτH, where c is an opportune constant and H is the 
Hurst exponent [Scafetta and Grigolini, 2002]. 
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  The value  H=0.5 characterizes random sequences 
which  are  known  as  white  noise  because  their  power 
spectrum  is  flat,  β=0.  A  value  0<β<1 or  0.5<H<1 
characterizes  persistent  or  long-range  correlated 
sequences,  where  an event  is  correlated positively  with 
the  previous  ones.  Thus,  persistent  sequences  are 
characterized  by  a  stochastically  up-up  or  down-down 
pattern.  A  value  β=1 or  H=1 characterizes  pure  1/f-
phenomena known in the literature as pink noise. It might 
be  possible  to  extend the discussion for  values  β>1 or 
H>1., which correspond to time series are more properly 
referred  to  as  walks,  that  is,  integrals  of  noises.   The 
simplest example of a walk is the random walk, which is 
the  integral  of  random  noise,  that  has  β=2 or H=1.5. 
Finally  a  value  β<0 or  0<H<0.5 characterizes  anti-
persistent  sequences  where  each  event  is  correlated 
negatively  with  the  previous  one.  Thus,  anti-persistent 
sequences  are  characterized  by  a  rapid  stochastically 
alternating up-down pattern.

Physiological sequences are usually characterized by 
a  value  of  the  Hurst  exponent  ranging  from  H=0.5 to 
H=1.5. This finding suggests that biological systems are 
correlated  persistent  processes  whose  dynamics  keeps 
memory  of  past  events.  It  is  largely  expected  that  the 
Hurst  exponent,  which  measures  the  strength  of  this 
memory, evolves as a response of internal or environment 
stress,  and  disease  because  modified  physiological 
conditions  likely  affect  the  dynamics  of   biological 
systems.

A  higher  hierarchy  of  complexity  is  shown  by 
multifractal time series. These sequences are characterized 
by  a  wide  spectrum of  fractal  dimension  [Feder,  1988; 
Mallat,  1999].  There  are  also  phenomena  where  local 
scaling exponents, commonly referred to as local Hölder 
exponents [Struzik, 2000], change from point to point in 
the  time  series.  Generally,  a  full  range  of  the  scaling 
properties  of  multifractal  phenomena  is  described  by  a 
singularity spectrum or a probability distribution of local 
Hölder exponents. Usually, singularity spectra and local 
Hölder  exponent  distributions  are  determined  by  data 
processing  techniques  based  on  wavelet  transforms 
[Mallat,  1999;  Struzik,  2000;  Scafetta  et  al.,  2003]. 
Another  method  relies  on  a  multifractal  detrended 
fluctuation analysis [Kantelhardt et al, 2002]. The average 
Hölder exponent, h0, is approximately related to the Hurst 
exponent as h0≈H-1 [Scafetta et al., 2003]. The singularity 
spectrum or  the probability  distribution of  local  Hölder 
exponents are characterized by at least three independent 
parameters: the position of the maximum, the width and 
the asymmetry of the singularity spectrum or probability 
distribution curve. As for the Hurst exponent, these three 
parameters too are expected to be altered under internal or 
environment stress and/or disease. 

Figure  1:   Hölder  exponent  histograms  for  the  stride 
interval  sequences  during free walking and metronome-
paced conditions for normal, slow and fast paces and for a 
normal  elderly  person  and  a  subject  with  Parkinson's 
disease.   The  histograms  are  fitted  with  Gaussian 
functions.  (L=Left,  C=Center,  R=Right).  (Data  from 
http://www.physionet.org).

3. PHYSIOLOGICAL EXAMPLES

In the following we summarize some of our results 
showing  the  fractal  dependency  of  physiological  time 
series  such  as  inter-breath  intervals,  inter-beat  (R-R) 
intervals  and  human  stride  intervals  on  environmental 
stress  and  physiological  pathologies.  Examples  regard 
cases  of  acute  hypobaric  hypoxia,  progressive  central 
hypovolemia, neurodegenerative diseases, as well as, from 
different kinds of physical exercises.

Figure 1 shows typical Hölder exponent distributions 
obtained  from  human  stride  interval  time  series  under 
different conditions. The fractal and multifractal nature of 
the  stride  interval  fluctuations  becomes  slightly  more 
pronounced  (that  is,  the  Hölder  exponent  distributions 
shift toward higher values and become wider) under faster 
or slower paced frequencies relative to the normal paced 
frequency of  a  subject  [Scafetta  et  al.,  2003;  West  and 
Scafetta, 2003]. In fact, the rationale of this finding is that 
under this type of stress a subject has to focus on the task 
and as a consequence the correlation of the physiological 
system increases.  On the contrary, the randomness of the 
fluctuations increases (the Hölder exponent distributions 
shift toward the left) if subjects are asked to synchronize 
their  gait  with  the  frequency  of  a  metronome.  One 
interpretation  is  that  the  psychological  synchronization 
acts  continuously  and  disrupts  the  natural  physiological 
temporal correlations of walking. 
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Figure 2:   Relationship between mean Hölder  exponent 
and total functional capacity (TFC) score of Unified Hunt-
ington’s Disease Rating Scale (0 = most impairment; 13 = 
no  impairment). The  mean  Hölder  exponent  decreases 
(that is, the sequences become more random) as the dis-
ease severity increases. The two measures are highly cor-
related (r2=0.64, P<0.005).  (Data from  http://www.phys-
ionet.org).

Figure 3:   Hölder exponent histograms for R-R interval 
time series for a patient subjected to progressive central 
hypovolemia using lower body negative pressure. Data for 
three  different  values  of  the  pressure  are  shown.   The 
histograms are fitted with Gaussian functions.

Figure 1 also suggests that there is an increase of the 
randomness  of  the stride interval  fluctuations  in elderly 
subjects  and  those  suffering  from  neurodegenerative 
disease such as Parkinson's disease. The relation between 
severity  of  a  neurodegenerative  disease  and  fractal 
exponents is more evident in Figure 2. Here a group of 
patients  with  Huntingdon's  disease is  studied  and  the 
mean Hölder exponent, h0, for stride interval sequences is 
found to be strongly correlated with the  total functional 

capacity  (TFC)  score  that  measures  the  severity  of 
impairment. This finding can be explained as a result of 
neuronal  deterioration  a  network  of  neurons  controlling 
human  locomotion  could  be  expected  to  become  less 
correlated  than  a  healthy  neuronal  network,  and  the 
leftward  shift  of  the  Hölder  exponent  distribution  is 
expected  to  increase  with  the  severity  of  the 
neurodegenerative disease, as Figure 2 shows. 

Figure  3  shows  the  dependency  of  the  fractal 
properties of R-R interval time series during progressive 
central  hypovolemia  with lower body negative  pressure 
[West et al., 3003]. By increasing the lower body negative 
pressure these time series became more persistent and the 
distributions of Hölder exponents became wider. Because 
physiological responses to lower body negative pressure 
are similar to those experienced during hemorrhage shock, 
multifractal  analysis  may be  a  powerful  tool  to  predict 
incipient shock.

Figure  4:   Hurst  exponents  of  inter  breath  interval 
sequences for a subject during normoxia (N) and hypoxia 
in a hypobaric chamber at a simulated altitude of 15,000 
feet. H-0 is a measurement at the beginning of the hypoxic 
exposure; H-2 is after two hours of continuous hypoxia. 
The  analysis  is  done  for  a  subject  at  rest  and  during 
exercise. 

Figure  4  shows  results  regarding  to  inter  breath 
interval  sequences of  a  resting normal human volunteer 
during  normoxia  and  during  a  2-hour  period  of  acute 
hypoxia.  These time series  exhibit  persistence,  although 
after 2 hours of hypoxia inter breath interval time series 
tended  to  become  more  random,  or  less  correlated,  as 
indicated by a decrease in the value of the Hurst exponent. 
This finding suggests that respiratory rhythm generation is 
disrupted by sudden acute hypoxia. If the same individual 
are  asked  to   exercise  for  approximately  ten  minutes 
during  each  condition,  inter  breath  interval  sequences 
became more random during acute hypoxia but for each 
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condition  the  sequences  were  more  persistent  (higher 
values  of  the  Hurst  exponent)  than  at  rest.  The  latter 
finding is an equivalent physiological response to what we 
have observed for the stride interval sequences (Figure 1), 
that  become  more  persistent  during  exercise.  This 
suggests  that,  in  general,  forced  exercise  induces  an 
increase of the dynamical correlation of a physiological 
system.  Thus,  we  can  hypothesize  that  fractal  analysis 
might be a useful tool with which to probe mechanisms 
involved  in  control  of  breathing  under  different 
environmental conditions.  

Figure  5:   Mean  Hurst  exponent  for  the  square  of  the 
volatility index of the inter breath interval sequence for 
the  first  36  hours  after  upper  abdominal  surgery  in  4 
patients.  The  Hurst  exponent  is  highly  correlated  with 
mean  end-tidal  PCO2  (r=0.93,  P=0.008).  Each  point 
represents one patient.

Figure  5 shows the  results  regarding  a  preliminary 
study  where  we  analyzed  postoperative  inter  breath 
interval  sequences  of  a  small  group  of  patients  for  the 
purpose  of  determining  whether  the  Hurst  exponent  of 
these  sequences  could  be  correlated  with  respiratory 
depression,  as  indicated  by  a  high  end-tidal  PCO2. 
Conventional  wisdom  indicates  that  respiratory 
depression is associated with a low respiratory rate.  On 
the contrary, we have found that respiratory rate can be 
misleading.  However,  a  significant  correlation  exists 
between  mean  end-tidal  PCO2 pressure  and  Hurst 
exponent value of the square of the volatility of the inter 
breath interval sequences (volatility is herein defined as 
the  difference  between  two  consecutive  inter  breath 
intervals). This study suggest the possibility of developing 
a novel diagnostic strategy based on the simple study of a 
relatively  inexpensive  and  non-invasive  continuous 
monitoring  of  inter  breath  interval.  In  fact,  continuous 
monitoring  of  arterial  blood  PCO2 is  impractical,  and 
measurement of end-tidal PCO2 inaccurate. 

4. CONCLUSIONS

The  rationale  of  these  finding  is  that  the  central 
nervous system is capable of firing at time intervals whose 
sequences  present  persistent  correlation  patterns. 
However, the intensity of the autocorrelation of the actual 
neural firing time intervals is expected to be influenced by 
both  a  change of  internal  neural  correlation  among the 
nervous  firing  centers  and/or  a  change  in  peripheral 
feedback.  These  physiological  responses  to  stress  or 
environmental  changes  can  be  modeled  by  a  simple 
stochastic central pattern generator that ideally reproduces 
the control system, which then drives respiratory neurons, 
causing  contraction  of  respiratory  muscles,  producing  a 
cyclical output [West and Scafetta, 2003]. 

In  conclusion,  we  find  that  fractal  and  multifractal 
analysis  of  physiological  signals  might  facilitate 
understanding of complex physiological systems and, as a 
direct  consequence,  could  help  develop  novel  clinical 
strategies for diagnosing pathology and detecting adverse 
events. 
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